Radiation-induced cardiovascular diseases: Is the epidemiologic evidence compatible with the radiobiologic data?

      The Life Span Study of Japanese atomic bomb survivors demonstrates that radiation exposure significantly increased the risk of developing ischemic heart disease, in particular myocardial infarction. Similarly, epidemiologic investigations in very large populations of patients who had received postoperative radiotherapy for breast cancer or for peptic ulcer demonstrate that radiation exposure of the heart with an average equivalent single dose of approximately 2 Gy significantly increased the risk of developing ischemic heart disease more than 10 years after irradiation. These epidemiologic findings are compatible with radiobiologic data on the pathogenesis of radiation-induced heart disease in experimental animals. The critical target structure appears to be the endothelial lining of blood vessels, in particular arteries, leading to early functional alterations such as pro-inflammatory responses and other changes, which are slowly progressive. Research should concentrate on the interaction of these radiation-induced endothelial changes with the early stages of age-related atherosclerosis to develop criteria for optimizing treatment plans in radiotherapy and also potential interventional strategies.


      To read this article in full you will need to make a payment
      ASTRO Member Login
      ASTRO Members, full access to the journal is a member benefit. Use your society credentials to access all journal content and features.
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Fajardo L.F.
        • Stewart J.R.
        • Cohn K.E.
        Morphology of radiation induced heart disease.
        Arch Pathol. 1968; 86: 512-519
        • Fajardo L.F.
        • Stewart J.R.
        Experimental radiation-induced heart disease.
        Am J Pathol. 1970; 59: 299-316
        • Adams M.J.
        • Lipshultz S.E.
        • Schwartz C.
        • et al.
        Radiation-associated cardiovascular disease: Manifestations and management.
        Semin Radiat Oncol. 2003; 13: 346-356
        • Schultz-Hector S.
        in: Scherer E. Streffer C. Trott K.R. Radiopathology of organs and tissues. Springer Verlag, Heidelberg1991: 347-368
        • Heidenreich P.A.
        • Hancock S.L.
        • Vagelos R.H.
        • et al.
        Diastolic dysfunction after mediastinal irradiation.
        Am Heart J. 2005; 150: 977-982
        • Hancock S.L.
        • Tucker M.A.
        • Hoppe R.T.
        Factors affecting late mortality from heart disease after treatment for Hodgkin’s disease.
        JAMA. 1993; 270: 1949-1955
        • Burns R.J.
        • Bar Shlomo B.Z.
        • Druck M.N.
        Detection of radiation cardiomyopathy by gated radionuclide angiography.
        Am J Med. 1983; 74: 297-301
        • Aleman B.M.
        • van den Beit-Dusebout A.W.
        • Klokman W.J.
        • et al.
        Long-term cause-specific mortality of patients treated for Hodgkin’s disease.
        J Clin Oncol. 2003; 21 (2003): 3431-3439
        • Reinders J.G.
        • Heijmen B.J.
        • Olofsen-van Acht M.J.
        Ischemic heart disease after mantle field irradiation for Hodgkin’s disease in long-term follow-up.
        Radiother Oncol. 1999; 51: 35-42
        • Preston D.L.
        • Shimizu Y.
        • Pierce D.A.
        • et al.
        Studies of mortality of atomic bomb survivors.
        Radiat Res. 2003; 160: 381-407
        • Yamada M.
        • Wong F.L.
        • Fujiwara S.
        • et al.
        Non-cancer disease incidence in atomic bomb survivors, 1958–1998.
        Radiat Res. 2004; 161: 622-632
        • Carr Z.A.
        • Land C.E.
        • Kleinermann R.A.
        • et al.
        Coronary heart disease after radiotherapy for peptic ulcer disease.
        Int J Radiat Oncol Biol Phys. 2005; 61: 842-850
        • Paszat L.F.
        • Mackillop W.J.
        • Groome P.A.
        • et al.
        Mortality from myocardial infarction after adjuvant radiotherapy for breast cancer in the surveillance, epidemiology, and end-results cancer registries.
        J Clin Oncol. 1998; 16: 2625-2631
        • Darby S.C.
        • McGale P.
        • Taylor C.W.
        • et al.
        Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: Prospective cohort study of about 300,000 women in US SEER cancer registries.
        Lancet Oncol. 2005; 6: 557-565
        • Gyenes G.
        • Rutqvist I.E.
        • Liedberg A.
        Long-term cardiac morbidity and mortality in a randomized trial of pre- and post-operative radiation therapy versus surgery alone in primary breast cancer.
        Radiother Oncol. 1998; 48: 185-190
        • Early Breast Cancer Trialists’ Collaborative Group
        Favourable and unfavourable effects on long-term survival of radiotherapy for early breast cancer: An overview of the randomized trials.
        Lancet. 2000; 355: 1757-1770
        • Clarke M.
        • Collins R.
        • Darby S.
        • et al.
        • Early Breast Cancer Trialists’ Collaborative Group (EBCTCG)
        Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: An overview of the randomised trials.
        Lancet. 2005; 366: 2087-2106
        • Lauk S.
        • Rüth S.
        • Trott K.R.
        The effects of dose-fractionation on radiation-induced heart disease in rats.
        Radiother Oncol. 1987; 8: 363-367
        • Schultz-Hector S.
        • Sund M.
        • Thames H.D.
        Fractionation sensitivity and repair kinetics of radiation-induced heart failure in the rat.
        Radiother Oncol. 1992; 23: 33-40
        • Hojris I.
        • Overgaard M.
        • Christensen J.J.
        • et al.
        Morbidity and mortality of ischaemic heart disease in high-risk breast cancer patients after adjuvant postmastectomy systemic treatment with or without radiotherapy: Analysis of DBCG 82b and 82c randomized trials.
        Lancet. 1999; 354: 1425-1430
        • Giordano S.H.
        • Kuo Y.F.
        • Freeeman J.L.
        • et al.
        Risk of cardiac death after adjuvant radiotherapy for breast cancer.
        J Natl Cancer Inst. 2005; 97: 419-424
        • Patt D.A.
        • Goodwin J.S.
        • Kuo Y.F.
        • et al.
        Cardiac morbidity of adjuvant radiotherapy for breast cancer.
        J Clin Oncol. 2005; 23: 7475-7482
        • Lauk S.
        • Kiszel Z.
        • Buschmann J.
        • et al.
        Radiation-induced heart disease in rats.
        Int J Radiat Oncol Biol Phys. 1985; 11: 801-808
        • Yeung T.K.
        • Hopewell J.W.
        Effects of single doses or radiation on cardiac function in the rat.
        Radiother Oncol. 1985; 3: 339-345
        • McChesney S.L.
        • Gillette K.L.
        • Orton C.E.
        Canine cardiomyopathy after whole heart and partial lung irradiation.
        Int J Radiat Oncol Biol Phys. 1988; 14: 1169-1174
        • Lauk S.
        Endothelial alkaline phosphatase activity loss as an early stage in the development of radiation-induced heart disease in rats.
        Radiat Res. 1987; 110: 118-128
        • Schultz-Hector S.
        • Böhm M.
        • Blöchel A.
        • et al.
        Radiation-induced heart disease: Morphology, changes in catecholamine synthesis and content, β-adrenoceptor density and hemodynamic function in an experimental model.
        Radiat Res. 1992; 129: 281-289
        • Morgenroth K.
        • Junge-Hülsing G.
        • Hauss W.H.
        Über Veränderungen am Rattenherzen nach gezielter Röntgenbestrahlung.
        Strahlentherapie. 1967; 133: 610-620
        • Fajardo L.F.
        • Stewart J.R.
        Capillary injury preceding radiation-induced myocardial fibrosis.
        Radiology. 1971; 101: 429-433
        • Schultz-Hector S.
        • Balz K.
        Radiation-induced loss of endothelial alkaline phosphatase activity and development of myocardial degeneration.
        Lab Invest. 1994; 71: 252-260
        • Lauk S.
        • Trott K.R.
        Endothelial proliferation in the rat heart following local heart irradiation.
        Int J Radiat Biol. 1990; 57: 1017-1030
        • Marks L.B.
        • Yu X.
        • Prosnitz R.G.
        • et al.
        The incidence and functional consequences of RT-associated cardiac perfusion defects.
        Int J Radiat Oncol Biol Phys. 2005; 63: 214-223
        • Lemmens R.
        • Vanduffel L.
        • Teuchy H.
        • et al.
        Regulation of proliferation of LLC-MK2 cells by nucleosides and nucleotides: The role of ecto-enzymes.
        Biochem J. 1996; 316: 551-557
        • Okruhlicova L.
        • Tribulova N.
        • Weismann P.
        • et al.
        Ultrastructure and histochemistry of rat myocardial capillary endothelial cells in response to diabetes and hypertension.
        Cell Research. 2005; 15: 532-538
        • Hallahan D.
        • Clark E.T.
        • Kuchibhotla J.
        • et al.
        E-selectin gene induction by ionizing radiation is independent of cytokine induction.
        Biochem Biophys Res Commun. 1995; 217: 784-795
        • Hallahan D.E.
        • Virudachalam S.
        Ionizing radiation mediates expression of cell adhesion molecules in distinct histological patterns within the lung.
        Cancer Res. 1997; 57: 2096-2099
        • Baeuml H.
        • Behrends U.
        • Peter R.U.
        • et al.
        Ionizing radiation induces, via generation of reactive oxygen intermediates, intercellular adhesion molecule-1 (ICAM-1) gene transcription and NF kappa B-like binding activity in the ICAM-1 transcriptional regulatory region.
        Free Radic Res. 1997; 27: 127-142
        • Heckmann M.
        • Douwes K.
        • Peter R.
        • et al.
        Vascular activation of adhesion molecule mRNA and cell surface expression by ionizing radiation.
        Exp Cell Res. 1998; 238: 148-154
        • Hallahan D.E.
        • Virudachalam S.
        Intercellular adhesion molecule 1 knockout abrogates radiation-induced pulmonary inflammation.
        Proc Nat Acad Sci. 1997; 94: 6432-6437
        • Hallahan D.E.
        • Virudachalam S.
        • Kuchibhotla J.
        Nuclear factor kappaB dominant negative genetic constructs inhibit X-ray induction of cell adhesion molecules in the vascular endothelium.
        Cancer Res. 1998; 58: 5484-5488
        • Van der Meeren A.
        • Squiban C.
        • Gourmelon P.
        • et al.
        Differential regulation by IL-4 and IL-10 of radiation-induced IL-6 and IL-8 production and ICAM-1 expression by human endothelial cells.
        Cytokine. 1999; 11: 831-838
        • Gallo R.L.
        • Dorschner R.A.
        • Takashima S.
        • et al.
        Endothelial cell surface alkaline phosphatase activity is induced by IL-6 released during wound repair.
        J Invest Dermatol. 1997; 109: 597-603
        • Li A.
        • Dubey S.
        • Varney M.L.
        • et al.
        IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis.
        J Immunol. 2003; 170: 3369-3376
        • Langley R.E.
        • Bump E.A.
        • Quartuccio S.G.
        • et al.
        Radiation-induced apoptosis in microvascular endothelial cells.
        Br J Cancer. 1997; 75: 666-672
        • Paris F.
        • Fuks Z.
        • Kang A.
        • et al.
        Endothelial apoptosis as the primary lesion initiating radiation damage in mice.
        Science. 2001; 293: 293-297
        • Reidy M.A.
        A reassessment of endothelial injury and arterial lesion formation.
        Lab Invest. 1985; 53: 513-520
        • Verheij M.
        • Dewit L.G.
        • Boomgaard M.N.
        • et al.
        Ionizing radiation enhances platelet adhesion to the extracellular matrix of human endothelial cells by an increase in the release of von Willebrand factor.
        Radiat Res. 1994; 137: 202-207
        • Boerma M.
        • Kruse J.J.
        • van Loenen M.
        • et al.
        Increased deposition of von Willebrand factor in the rat heart after local ionizing irradiation.
        Strahlenther Onkol. 2004; 180: 109-116
        • van Kleef E.M.
        • te Poele J.A.
        • Oussoren Y.G.
        • et al.
        Increased expression of glomerular von Willebrand factor after irradiation of the mouse kidney.
        Radiat Res. 1998; 150: 528-534
        • Farias C.E.
        • Gimenez J.C.
        • Kempfer A.C.
        • et al.
        Ionizing radiation increases concentration of plasma von Willebrand factor in Cebus Apella Paraguayanus monkeys.
        Thromb Res. 1997; 88: 81-87
        • Bertagna A.
        • Jahroudi N.
        The NFY transcription factor mediates induction of the von Willebrand factor promoter by irradiation.
        Thromb Haemost. 2001; 85: 837-844
        • Kuin A.
        • Citarella F.
        • Oussoren Y.G.
        • et al.
        Increased glomerular Vwf after kidney irradiation is not due to increased biosynthesis or endothelial cell proliferation.
        Radiat Res. 2001; 156: 20-27
        • Ritskes-Hoitinga J.
        • Beynen A.C.
        Atherosclerosis in the rat.
        Artery. 1988; 16: 25-50
        • Lauk S.
        • Trott K.R.
        Radiation-induced heart disease in hypertensive rats.
        Int J Radiat Oncol Biol Phys. 1988; 13: 109-114
        • Stewart F.A.
        • Heeneman S.
        • te Poele J.
        • et al.
        Ionizing radiation accelerates the development of atherosclerotic lesions in APOE -/- mice and predisposes to an inflammation plaque phenotype prone to hemorrhage.
        Am J Pathol. 2006; (in print)
        • Hansson G.K.
        Inflammation, atherosclerosis, and coronary artery disease.
        N Engl J Med. 2005; 352: 1685-1695
        • Lusis A.J.
        Nature. 2000; 407: 233-241
        • Orr A.W.
        • Sanders J.M.
        • Benard M.
        • et al.
        The subendothelial extracellular matrix modulates NFkappaB activation by flow: A potential role in atherosclerosis.
        J Biol Chem. 2005; 169: 191-202
        • Monaco C.
        • Andreakos E.
        • Kiriakidis S.
        • et al.
        Canonical pathway of nuclear factor kappa B activation selectively regulates proinflammatory and prothrombotic responses in human atherosclerosis.
        Proc Natl Acad Sci U S A. 2004; 101: 5634-5639
        • Werner N.
        • Kosiol S.
        • Schiegl T.
        • et al.
        Circulating endothelial progenitor cells and cardiovascular outcomes.
        N Engl J Med. 2005; 353: 999-1007
        • Benditt E.P.
        • Benditt J.M.
        Evidence for a monoclonal origin of human atherosclerotic plaques.
        Proc Natl Acad Sci U S A. 1973; 70: 1753-1756
        • Schwartz S.M.
        • Murray C.E.
        Proliferation and the monoclonal origin of atherosclerotic lesions.
        Annu Rev Med. 1998; 49: 437-460
        • Murry C.E.
        • Gipaya C.T.
        • Bartosek T.
        • et al.
        Monoclonality of smooth muscle cells in human atherosclerosis.
        Am J Pathol. 1997; 151: 697-705
        • Hatzistamou J.
        • Klaris H.
        • Ergazaki M.
        • et al.
        Loss of heterozygosity and microsatellite instability in human atherosclerotic plaques.
        Biochem Biophys Res Commun. 1996; 165: 1067-1071
        • Andreassi M.G.
        • Botto N.
        DNA damage as a new emerging risk factor in atherosclerosis.
        Trends Cardiovascular Med. 2003; 13: 270-275
        • Kusunoki Y.
        • Kyoizumi S.
        • Yamaoka M.
        • et al.
        Decreased proportion of CD4 T cells in the blood of atomic bomb survivors with myocardial infarction.
        Radiat Res. 1999; 152: 539-543
        • Fujiwara S.
        • Sposto R.
        • Shiraki M.
        • et al.
        Levels of parathyroid hormone and calcitonin in serum among atom bomb survivors.
        Radiat Res. 1994; 137: 96-103
        • Gaugler M.H.
        • Veycken-Holler V.
        • Squiban C.
        • et al.
        Pravastatin limits endothelial action after irradiation and decreases the resulting inflammatory and thrombotic responses.
        Radiat Res. 2005; 163: 479-487
        • Wang J.
        • Albertson C.M.
        • Zheng H.
        • et al.
        Short-term inhibition of ADP-induced platelet aggregation by clopidogrel ameliorates radiation-induced toxicity in rat small intestine.
        Thromb Haemost. 2002; 87: 122-128
        • Molla M.
        • Gironella M.
        • Salas A.
        • et al.
        Protective effect of superoxide dismutase in radiation-induced intestinal inflammation.
        Int J Radiat Oncol Biol Phys. 2005; 61: 1159-1166


      Commenting Guidelines

      To submit a comment for a journal article, please use the space above and note the following:

      • We will review submitted comments as soon as possible, striving for within two business days.
      • This forum is intended for constructive dialogue. Comments that are commercial or promotional in nature, pertain to specific medical cases, are not relevant to the article for which they have been submitted, or are otherwise inappropriate will not be posted.
      • We require that commenters identify themselves with names and affiliations.
      • Comments must be in compliance with our Terms & Conditions.
      • Comments are not peer-reviewed.