Radiation Dose–Volume Effects of Optic Nerves and Chiasm

      Publications relating radiation toxicity of the optic nerves and chiasm to quantitative dose and dose–volume measures were reviewed. Few studies have adequate data for dose–volume outcome modeling. The risk of toxicity increased markedly at doses >60 Gy at ≈1.8 Gy/fraction and at >12 Gy for single-fraction radiosurgery. The evidence is strong that radiation tolerance is increased with a reduction in the dose per fraction. Models of threshold tolerance were examined.
      To read this article in full you will need to make a payment
      ASTRO Member Login
      ASTRO Members, full access to the journal is a member benefit. Use your society credentials to access all journal content and features.
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Lessell S.
        Friendly fire: Neurogenic visual loss from radiation therapy.
        J Neuroophthalmol. 2004; 24: 243-250
        • Danesh-Meyer H.V.
        Radiation-induced optic neuropathy.
        J Clin Neurosci. 2008; 15: 95-100
        • Gordon K.B.
        • Char D.H.
        • Sagerman R.H.
        Late effects of radiation on the eye and ocular adnexa.
        Int J Radiat Oncol Biol Phys. 1995; 31: 1123-1139
        • Parsons J.T.
        • Bova F.J.
        • Fitzgerald C.R.
        • et al.
        Radiation optic neuropathy after megavoltage external-beam irradiation: Analysis of time–dose factors.
        Int J Radiat Oncol Biol Phys. 1994; 30: 755-763
        • Rubin P.
        • Constine L.S.
        • Fajardo L.F.
        • et al.
        for the RTOG Late Effects Working Group. Overview: Late Effects of Normal Tissues (LENT) scoring system.
        Int J Radiat Oncol Biol Phys. 1995; 31: 1041-1042
        • Pavy J.J.
        • Denekamp J.
        • Letschert J.
        • et al.
        EORTC Late Effects Working Group. Late Effects toxicity scoring: the SOMA scale.
        Int J Radiat Oncol Biol Phys. 1995; 31: 1043-1047
        • van den Bergh A.C.
        • Dullaart R.P.
        • Hoving M.A.
        • et al.
        Radiation optic neuropathy after external beam radiation therapy for acromegaly.
        Radiother Oncol. 2003; 68: 95-100
        • Hudgins P.A.
        • Newman N.J.
        • Dillon W.P.
        • et al.
        Radiation-induced optic neuropathy: Characteristic appearances on gadolinium-enhanced MR.
        AJNR Am J Neuroradiol. 1992; 13: 235-238
        • Kline L.B.
        • Kim J.Y.
        • Ceballos R.
        Radiation optic neuropathy.
        Ophthalmology. 1985; 92: 1118-1126
        • Celesia G.G.
        • DeMarco Jr., P.J.
        Anatomy and physiology of the visual system.
        J Clin Neurophysiol. 1994; 11: 482-492
        • Netter F.H.
        • Hansen J.T.
        Atlas of Human Anatomy.
        4th ed. WB Saunders, Philadelphia2006
        • Duus P.
        Topical Diagnosis in Neurology: Anatomy, Physiology, Signs, Symptoms.
        3rd rev. Thieme, Stuttgart1998
        • Emami B.
        • Lyman J.
        • Brown A.
        • et al.
        Tolerance of normal tissue to therapeutic irradiation.
        Int J Radiat Oncol Biol Phys. 1991; 21: 109-122
        • Martel M.K.
        • Sandler H.M.
        • Cornblath W.T.
        • et al.
        Dose–volume complication analysis for visual pathway structures of patients with advanced paranasal sinus tumors.
        Int J Radiat Oncol Biol Phys. 1997; 38: 273-284
        • Jiang G.L.
        • Tucker S.L.
        • Guttenberger R.
        • et al.
        Radiation-induced injury to the visual pathway.
        Radiother Oncol. 1994; 30: 17-25
        • Hoppe B.S.
        • Nelson C.J.
        • Gomez D.R.
        • et al.
        Unresectable carcinoma of the paranasal sinuses: Outcomes and toxicities.
        Int J Radiat Oncol Biol Phys. 2008; 72: 763-769
        • Daly M.E.
        • Chen A.M.
        • Bucci M.K.
        • et al.
        Intensity-modulated radiation therapy for malignancies of the nasal cavity and paranasal sinuses.
        Int J Radiat Oncol Biol Phys. 2007; 67: 151-157
        • Mackley H.B.
        • Reddy C.A.
        • Lee S.Y.
        • et al.
        Intensity-modulated radiotherapy for pituitary adenomas: The preliminary report of the Cleveland Clinic experience.
        Int J Radiat Oncol Biol Phys. 2007; 67: 232-239
        • Aristizabal S.
        • Caldwell W.L.
        • Avila J.
        The relationship of time-dose fractionation factors to complications in the treatment of pituitary tumors by irradiation.
        Int J Radiat Oncol Biol Phys. 1977; 2: 667-673
        • Bhandare N.
        • Monroe A.T.
        • Morris C.G.
        • et al.
        Does altered fractionation influence the risk of radiation-induced optic neuropathy?.
        Int J Radiat Oncol Biol Phys. 2005; 62: 1070-1077
        • Hoppe B.S.
        • Stegman L.D.
        • Zelefsky M.J.
        • et al.
        Treatment of nasal cavity and paranasal sinus cancer with modern radiotherapy techniques in the postoperative setting—The MSKCC experience.
        Int J Radiat Oncol Biol Phys. 2007; 67: 691-702
        • Vatnitsky S.
        • Moyers M.
        • Miller D.
        • et al.
        Proton dosimetry intercomparison based on the ICRU report 59 protocol.
        Radiother Oncol. 1999; 51: 273-279
        • Newhauser W.D.
        • Myers K.D.
        • Rosenthal S.J.
        • et al.
        Proton beam dosimetry for radiosurgery: Implementation of the ICRU Report 59 at the Harvard Cyclotron Laboratory.
        Phys Med Biol. 2002; 47: 1369-1389
        • International Commission on Radiation Units and Measurements
        Report 78: Prescribing, recording and reporting proton-beam therapy.
        J ICRU. 2007; 7: 49-81
        • Wenkel E.
        • Thornton A.F.
        • Finkelstein D.
        • et al.
        Benign meningioma: partially resected, biopsied, and recurrent intracranial tumors treated with combined proton and photon radiotherapy.
        Int J Radiat Oncol Biol Phys. 2000; 48: 1363-1370
        • Noel G.
        • Habrand J.L.
        • Mammar H.
        • et al.
        Combination of photon and proton radiation therapy for chordomas and chondrosarcomas of the skull base: The Centre de Protontherapie D'Orsay experience.
        Int J Radiat Oncol Biol Phys. 2001; 51: 392-398
        • Weber D.C.
        • Rutz H.P.
        • Pedroni E.S.
        • et al.
        Results of spot-scanning proton radiation therapy for chordoma and chondrosarcoma of the skull base: The Paul Scherrer Institut experience.
        Int J Radiat Oncol Biol Phys. 2005; 63: 401-409
        • Nishimura H.
        • Ogino T.
        • Kawashima M.
        • et al.
        Proton-beam therapy for olfactory neuroblastoma.
        Int J Radiat Oncol Biol Phys. 2007; 68: 758-762
        • Schulz-Ertner D.
        • Karger C.P.
        • Feuerhake A.
        • et al.
        Effectiveness of carbon ion radiotherapy in the treatment of skull-base chordomas.
        Int J Radiat Oncol Biol Phys. 2007; 68: 449-457
        • Tishler R.B.
        • Loeffler J.S.
        • Lunsford L.D.
        • et al.
        Tolerance of cranial nerves of the cavernous sinus to radiosurgery.
        Int J Radiat Oncol Biol Phys. 1993; 27: 215-221
        • Stafford S.L.
        • Pollock B.E.
        • Leavitt J.A.
        • et al.
        A study on the radiation tolerance of the optic nerves and chiasm after stereotactic radiosurgery.
        Int J Radiat Oncol Biol Phys. 2003; 55: 1177-1181
        • Pollock B.E.
        • Cochran J.
        • Natt N.
        • et al.
        Gamma knife radiosurgery for patients with nonfunctioning pituitary adenomas: Results from a 15-year experience.
        Int J Radiat Oncol Biol Phys. 2008; 70: 1325-1329
        • Leber K.A.
        • Bergloff J.
        • Pendl G.
        Dose–response tolerance of the visual pathways and cranial nerves of the cavernous sinus to stereotactic radiosurgery.
        J Neurosurg. 1998; 88: 43-50
        • Flickinger J.C.
        • Deutsch M.
        • Lunsford L.D.
        Repeat megavoltage irradiation of pituitary and suprasellar tumors.
        Int J Radiat Oncol Biol Phys. 1989; 17: 171-175
        • Burman C.
        • Kutcher G.J.
        • Emami B.
        • et al.
        Fitting of normal tissue tolerance data to an analytic function.
        Int J Radiat Oncol Biol Phys. 1991; 21: 123-135
        • Brizel D.M.
        • Light K.
        • Zhou S.M.
        • et al.
        Conformal radiation therapy treatment planning reduces the dose to the optic structures for patients with tumors of the paranasal sinuses.
        Radiother Oncol. 1999; 51: 215-218
        • Flickinger J.C.
        • Kondziolka D.
        • Lunsford L.D.
        Radiobiological analysis of tissue responses following radiosurgery.
        Technol Cancer Res Treat. 2003; 2: 87-92
        • Kirkpatrick J.P.
        • Meyer J.J.
        • Marks L.B.
        The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery.
        Semin Radiat Oncol. 2008; 18: 240-243
        • Flickinger J.C.
        • Lunsford L.D.
        • Singer J.
        • et al.
        Megavoltage external beam irradiation of craniopharyngiomas: Analysis of tumor control and morbidity.
        Int J Radiat Oncol Biol Phys. 1990; 19: 117-122
        • Goldsmith B.J.
        • Rosenthal S.A.
        • Wara W.M.
        • et al.
        Optic neuropathy after irradiation of meningioma.
        Radiology. 1992; 185: 71-76
        • Shrieve D.C.
        • Hazard L.
        • Boucher K.
        • et al.
        Dose fractionation in stereotactic radiotherapy for parasellar meningiomas: Radiobiological considerations of efficacy and optic nerve tolerance.
        J Neurosurg. 2004; 101: 390-395
        • Finger P.T.
        Anti-VEGF bevacizumab (Avastin) for radiation optic neuropathy.
        Am J Ophthalmol. 2007; 143: 335-338
        • Finger P.T.
        Radiation retinopathy is treatable with anti-vascular endothelial growth factor bevacizumab (Avastin).
        Int J Radiat Oncol Biol Phys. 2008; 70: 974-977
        • Trotti A.
        • Colevas A.D.
        • Setser A.
        • et al.
        CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment.
        Semin Radiat Oncol. 2003; 13: 176-181
        • Trotti A.
        • Byhardt R.
        • Stetz J.
        • et al.
        Common toxicity criteria: Version 2.0. an improved reference for grading the acute effects of cancer treatment: Impact on radiotherapy.
        Int J Radiat Oncol Biol Phys. 2000; 47: 13-47
        • Cox J.D.
        • Stetz J.
        • Pajak T.F.
        Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC).
        Int J Radiat Oncol Biol Phys. 1995; 31: 1341-1346
        • Lee M.
        • Kalani M.Y.
        • Cheshier S.
        • et al.
        Radiation therapy and CyberKnife radiosurgery in the management of craniopharyngiomas.
        Neurosurg Focus. 2008; 24: E4
        • Pigeaud-Klessens M.L.
        • Kralendonk J.H.
        Radiation retino- and opticopathy: A prospective study.
        Doc Ophthalmol. 1992; 79: 285-291


      Commenting Guidelines

      To submit a comment for a journal article, please use the space above and note the following:

      • We will review submitted comments as soon as possible, striving for within two business days.
      • This forum is intended for constructive dialogue. Comments that are commercial or promotional in nature, pertain to specific medical cases, are not relevant to the article for which they have been submitted, or are otherwise inappropriate will not be posted.
      • We require that commenters identify themselves with names and affiliations.
      • Comments must be in compliance with our Terms & Conditions.
      • Comments are not peer-reviewed.