Advertisement

Radiation Dose–Volume Effects in the Spinal Cord

      Dose–volume data for myelopathy in humans treated with radiotherapy (RT) to the spine is reviewed, along with pertinent preclinical data. Using conventional fractionation of 1.8–2 Gy/fraction to the full-thickness cord, the estimated risk of myelopathy is <1% and <10% at 54 Gy and 61 Gy, respectively, with a calculated strong dependence on dose/fraction (α/β = 0.87 Gy.) Reirradiation data in animals and humans suggest partial repair of RT-induced subclinical damage becoming evident about 6 months post-RT and increasing over the next 2 years. Reports of myelopathy from stereotactic radiosurgery to spinal lesions appear rare (<1%) when the maximum spinal cord dose is limited to the equivalent of 13 Gy in a single fraction or 20 Gy in three fractions. However, long-term data are insufficient to calculate a dose–volume relationship for myelopathy when the partial cord is treated with a hypofractionated regimen.
      To read this article in full you will need to make a payment
      ASTRO Member Login
      ASTRO Members, full access to the journal is a member benefit. Use your society credentials to access all journal content and features.
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Goetz C.
        Textbook of clinical neurology.
        2nd ed. Saunders, Chicago, IL2003
        • Klimo Jr., P.
        • Thompson C.J.
        • Kestle J.R.
        • et al.
        A meta-analysis of surgery versus conventional radiotherapy for the treatment of metastatic spinal epidural disease.
        Neuro Oncol. 2005; 7: 64-76
        • Schultheiss T.E.
        • Kun L.E.
        • Ang K.K.
        • et al.
        Radiation response of the central nervous system.
        Int J Radiat Oncol Biol Phys. 1995; 31: 1093-1112
      1. Cancer Therapy Evaluation Program, Common Terminology Criteria for Adverse Events, Version 3.0, DCTD, NCI, NIH, DHHS, March 31, 2003. Available online at: http://ctep.cancer.gov. Accessed August 31, 2008.

        • Abbatucci J.S.
        • DeLozier T.
        • Quint R.
        • et al.
        Radiation myelopathy of the cervical spinal cord. Time, dose, and volume factors.
        Int J Radiat Oncol Biol Phys. 1978; 4: 239-248
        • Saghal A.
        • Larson D.
        • Chang E.L.
        Stereotactic body radiosurgery for spinal metastases: A critical review.
        Int J Radiat Oncol Biol Phys. 2008; 71: 652-665
        • Ryu S.
        • Jin J.Y.
        • Jin R.
        • et al.
        Partial volume tolerance of the spinal cord and complications of single-dose radiosurgery.
        Cancer. 2007; 109: 628-636
        • Philippens M.E.
        • Pop L.A.
        • Visser A.G.
        • et al.
        Dose-volume effects in rat thoracolumbar spinal cord: The effects of nonuniform dose distribution.
        Int J Radiat Oncol Biol Phys. 2007; 69: 204-213
        • Coderre J.A.
        • Morris G.M.
        • Micca P.L.
        • et al.
        Late effects of radiation on the central nervous system: Role of vascular endothelial damage and glial stem cell survival.
        Radiat Res. 2006; 166: 495-503
        • Bijl H.P.
        • van Luijk P.
        • Coppes R.P.
        • et al.
        Dose-volume effects in the rat cervical spinal cord after proton irradiation.
        Int J Radiat Oncol Biol Phys. 2002; 52: 205-211
        • Bijl H.P.
        • van Luijk P.
        • Coppes R.P.
        • et al.
        Regional differences in radiosensitivity across the rat cervical spinal cord.
        Int J Radiat Oncol Biol Phys. 2005; 61: 543-551
        • Ang K.K.
        • van der Kogel A.J.
        • van der Schueren E.
        • et al.
        The effect of small radiation doses on the rat spinal cord: The concept of partial tolerance.
        Int J Radiat Oncol Biol Phys. 1983; 9: 1487-1491
        • Ang K.K.
        • Price R.E.
        • Stephens L.C.
        • et al.
        The tolerance of primate spinal cord to re-irradiation.
        Int J Radiat Oncol Biol Phys. 1993; 25: 459-464
        • Ang K.K.
        • Jiang G.L.
        • Feng Y.
        • et al.
        Extent and kinetics of recovery of occult spinal cord injury.
        Int J Radiat Oncol Biol Phys. 2001; 50: 1013-1020
        • Knowles J.F.
        The radiosensitivity of the guinea-pig spinal cord to X-rays: The effect of retreatment at one year and the effect of age at the time of irradiation.
        Int J Radiat Biol Relat Stud Phys Chem Med. 1983; 44: 433-442
        • Ruifrok A.C.
        • Kleiboer B.J.
        • van der Kogel A.J.
        Repair kinetics of radiation damage in the developing rat cervical spinal cord.
        Int J Radiat Biol. 1993; 63: 501-508
        • Wong C.S.
        • Hao Y.
        Long-term recovery kinetics of radiation damage in rat spinal cord.
        Int J Radiat Oncol Biol Phys. 1997; 37: 171-179
        • Schultheiss T.E.
        The radiation dose-response of the human spinal cord.
        Int J Radiat Oncol Biol Phys. 2008; 71: 1455-1459
        • McCunniff A.J.
        • Lliang M.J.
        Radiation tolerance of the cervical spinal cord.
        Int J Radiat Oncol Biol Phys. 1989; 16: 675-678
        • Atkins H.L.
        • Tretter P.
        Time-dose considerations in radiation myelopathy.
        Acta Radiol Ther Phys Biol Gy. 1966; 5: 79-94
        • Marcus Jr., R.B.
        • Million R.R.
        The incidence of myelitis after irradiation of the cervical spinal cord.
        Int J Radiat Oncol Biol Phys. 1990; 93: 3-8
        • Jeremic B.J.
        • Djuric L.
        • Mijatovic L.
        Incidence of radiation myelitis of the cervical spinal cord at doses of 5500 cGy or greater.
        Cancer. 1991; 68: 2138-2141
        • Hazra T.A.
        • Chandrasekaran M.S.
        • Colman M.
        • et al.
        Survival in carcinoma of the lung after a split course of radiotherapy.
        Br J Radiol. 1974; 47: 464-466
        • Choi N.C.H.
        • Grillo H.C.
        • Gardiello M.
        • et al.
        Basis for new strategies in postoperative radiotherapy of bronchogenic carcinoma.
        Int J Radiat Oncol Biol Phys. 1980; 6: 31-35
        • Abramson N.
        • Cavanaugh P.J.
        Short-course radiation therapy in carcinoma of the lung.
        Radiology. 1973; 108: 685-687
        • Fitzgerald R.H.
        • Marks R.D.
        • Wallace K.M.
        Chronic radiation myelitis.
        Radiology. 1982; 144: 609-612
        • Madden F.J.F.
        • English J.S.C.
        • Moore A.K.
        • et al.
        Split course radiation in inoperable carcinoma of the bronchus.
        Eur J Cancer. 1979; 15: 1175-1177
        • Guthrie R.T.
        • Ptacek J.J.
        • Hjass A.C.
        Comparative analysis of two regimens of split course radiation in carcinoma of the lung.
        Am J Roentgenol. 1973; 117: 605-608
        • Dische S.
        • Warburton M.F.
        • Sanders M.I.
        Radiation myelitis and survival in the radiotherapy of lung cancer.
        Int J Radiat Oncol Biol Phys. 1988; 15: 75-81
        • Hatlevoll R.
        • Host H.
        • Kaalhus O.
        Myelopathy following radiotherapy of bronchial carcinoma with large single fractions: A retrospective study.
        Int J Radiat Oncol Biol Phys. 1983; 9: 41-44
        • Eichhorn H.J.
        • Lessel A.
        • Rotte K.H.
        Einfuss verschiedener Bestrahlungsrhythmen auf Tumor-und Normalgewebe in vivo.
        Strahlentheraphie. 1972; 146: 614-629
        • Scruggs H.
        • El-Mahdi A.
        • Marks Jr., R.D.
        • et al.
        The results of split-course radiation therapy in cancer of the lung.
        Am J Roentgenol Radium Ther Nucl Med. 1974; 121: 754-760
        • Macbeth F.R.
        • Bolger J.J.
        • Hopwood P.
        • et al.
        Randomized trial of palliative two-fraction versus more intensive 13-fraction radiotherapy for patients with inoperable non-small cell lung cancer and good performance status. Medical Research Council Lung Cancer Working Party.
        Clin Oncol (R Coll Radiol). 1996; 8 ([see comment]): 167-175
        • Macbeth F.R.
        • Wheldon T.E.
        • Girling D.J.
        • et al.
        Radiation myelopathy: Estimates of risk in 1048 patients in three randomized trials of palliative radiotherapy for non-small cell lung cancer. The Medical Research Council Lung Cancer Working Party.
        Clin Oncol (R Coll Radiol). 1996; 8: 176-181
        • Nieder C.
        • Grosu A.L.
        • Andratschke N.H.
        • et al.
        Proposal of human spinal cord reirradiation dose based on collection of data from 40 patients.
        Int J Radiat Oncol Biol Phys. 2005; 61: 851-855
        • Wright J.L.
        • Lovelock D.M.
        • Bilsky M.H.
        • et al.
        Clinical outcomes after reirradiation of paraspinal tumors.
        Am J Clin Oncol. 2006; 29: 495-502
        • Langendijk J.A.
        • Kasperts N.
        • Leemans C.R.
        • et al.
        A phase II study of primary reirradiation in squamous cell carcinoma of head and neck.
        Radiother Oncol. 2006; 78: 306-312
        • Grosu A.L.
        • Andratschke N.
        • Nieder C.
        • et al.
        Retreatment of the spinal cord with palliative radiotherapy.
        Int J Radiat Oncol Biol Phys. 2002; 52: 1288-1292
        • Nieder C.
        • Grosu A.L.
        • Andratschke N.H.
        • et al.
        Update of human spinal cord reirradiation tolerance based on additional data from 38 patients.
        Int J Radiat Oncol Biol Phys. 2006; 66: 1446-1449
        • Schiff D.
        • Shaw E.G.
        • Cascino T.L.
        Outcome after spinal reirradiation for malignant epidural spinal cord compression.
        Ann Neurol. 1995; 37: 583-5899
        • Ryu S.
        • Gorty S.
        • Kazee A.M.
        • et al.
        Reirradiation of human cervical spinal cord.
        Am J Clin Oncol. 2000; 23: 29-31
        • Kuo J.V.
        • Cabebe E.
        • Al-Ghazi M.
        • et al.
        Intensity-modulated radiation therapy for the spine at the University of California, Irvine.
        Med Dosim. 2002; 27: 137-145
        • Bauman G.S.
        • Sneed P.K.
        • Wara W.M.
        • et al.
        Reirradiation of primary CNS tumors.
        Int J Radiat Oncol Biol Phys. 1996; 36: 433-441
        • Sminia P.
        • Oldenburger F.
        • Slotman B.J.
        • et al.
        Re-irradiation of the human spinal cord.
        Strahlenther Onkol. 2002; 178: 453-456
        • Magrini S.M.
        • Biti G.P.
        • de Scisciolo G.
        • et al.
        Neurological damage in patients irradiated twice on the spinal cord: A morphologic and electrophysiological study.
        Radiother Oncol. 1990; 17: 209-218
        • Rades D.
        • Stalpers L.J.A.
        • Veninga T.
        • et al.
        Evaluation of five radiation schedules and prognostic factors for metastatic spinal cord compression.
        J Clin Oncol. 2005; 23: 3366-3375
        • Jackson M.A.
        • Ball D.L.
        Palliative retreatment of locally recurrent lung cancer after radical radiotherapy.
        Med J Aust. 1987; 147: 391-394
        • Wong C.S.
        • Van Dyk J.
        • Milosevic M.
        • et al.
        Radiation myelopathy following single courses of radiotherapy and retreatment.
        Int J Radiat Oncol Biol Phys. 1994; 30: 575-581
        • Gwak H.-S.
        • Yoo H.-J.
        • Youn S.-M.
        • et al.
        Hypofractionated stereotactic radiotherapy for skull base and upper cervical chordoma and chondrosarcoma: Preliminary results.
        Stereotact Funct Neurosurg. 2005; 83: 233-243
        • Gibbs I.C.
        • Patil I.
        • Gerszten P.C.
        • et al.
        Delayed radiation-induced myelopathy after spinal radiosurgery.
        Neurosurg. 2009; 64: A67-A72
        • Benzil D.L.
        • Saboori M.
        • Mogilner A.Y.
        • et al.
        Safety and efficacy of stereotactic radiosurgery for tumors of the spine.
        J Neurosurg. 2004; 101: 413-418
        • Sahgal A.
        • Choua D.
        • Amesa C.
        • et al.
        Proximity of spinous/paraspinous radiosurgery metastatic targets to the spinal cord versus risk of local failure.
        Int J Radiat Oncol Biol Phys. 2007; 69: S243
        • Sahgal A.
        • Chou D.
        • Ames C.
        • et al.
        Image-guided robotic stereotactic body radiotherapy for benign spinal tumors: The University of California San Francisco preliminary experience.
        Technol Cancer Res Treat. 2007; 6: 595-604
        • Chang E.L.
        • Shiu A.S.
        • Mendel E.
        • et al.
        Phase I/II study of stereotactic body radiotherapy for spinal metastasis and its pattern of failure.
        J Neurosurg Spine. 2007; 7: 151-160
        • Gerszten P.C.
        • Burton S.A.
        • Welch W.C.
        • et al.
        Single-fraction radiosurgery for the treatment of spinal breast metastases.
        Cancer. 2005; 104: 2244-2254
        • Nelson J.W.
        • Yoo D.S.
        • Wang Z.
        • et al.
        Stereotactic body radiotherapy for lesions of the spine and paraspinal regions.
        Int J Radiat Oncol Biol Phys. 2009; 73: 1369-1375
        • Ruifrok A.C.
        • Kleiboer B.J.
        • van der Kogel A.J.
        Radiation tolerance of the immature rat spinal cord.
        Radiother Oncol. 1992; 23: 249-256
        • Ruifrok A.C.
        • Kleiboer B.J.
        • van der Kogel A.J.
        Radiation tolerance and fractionation sensitivity of the developing rat cervical spinal cord.
        Int J Radiat Oncol Biol Phys. 1992; 24: 505-510
        • Ruifrok A.C.
        • Stephens L.C.
        • van der Kogel A.J.
        Radiation response of the rat cervical spinal cord after irradiation at different ages: Tolerance, latency and pathology.
        Int J Radiat Oncol Biol Phys. 1994; 29: 73-79
        • Friedman D.L.
        • Constine L.S.
        Late effects of cancer treatment.
        in: Halperin E.C. Constine L.S. Tarbell N.J. Kun L.E. Pediatric radiation oncology. Lippincott, Williams & Wilkins, Philadelphia2005
        • Ruifrok A.C.
        • van der Kogel A.J.
        The effect of intraspinal cytosine arabinoside on the re-irradiation tolerance of the cervical spinal cord of young and adult rats.
        Eur J Cancer. 1993; 29A: 1766-1770
        • Grégoire V.
        • Ruifrok A.C.
        • Price R.E.
        • et al.
        Effect of intra-peritoneal fludarabine on rat spinal cord tolerance to fractionated irradiation.
        Radiother Oncol. 1995; 36: 50-55
        • Ruckdeschel J.C.
        • Baxter D.H.
        • McKneally M.F.
        • et al.
        Sequential radiotherapy and Adriamycin in the management of bronchogenic carcinoma: The question of additive toxicity.
        Int J Radiat Oncol Biol Phys. 1979; 5: 1323-1328
        • Bloss J.D.
        • DiSaia P.J.
        • Mannel R.S.
        • et al.
        Radiation myelitis: A complication of concurrent cisplatin and 5-fluorouracil chemotherapy with extended field radiotherapy for carcinoma of the uterine cervix.
        Gynecol Oncol. 1991; 43: 305-308
        • Chao M.W.
        • Wirth A.
        • Ryan G.
        • et al.
        Radiation myelopathy following transplantation and radiotherapy for non-Hodgkin's lymphoma.
        Int J Radiat Oncol Biol Phys. 1998; 41: 1057-1061
        • Seddon B.M.
        • Cassoni A.M.
        • Galloway M.J.
        • et al.
        Fatal radiation myelopathy after high-dose busulfan and melphalan chemotherapy and radiotherapy for Ewing's sarcoma: A review of the literature and implications for practice.
        Clin Oncol (R Coll Radiol). 2005; 17: 385-390
        • Lee Y.Y.
        • Nauert C.
        • Glass J.P.
        Treatment-related white matter changes in cancer patients.
        Cancer. 1986; 57: 1473-1482
        • Schultheiss T.E.
        • Kun L.E.
        • Ang K.K.
        • et al.
        Radiation response of the central nervous system.
        Int J Radiat Oncol Biol Phys. 1995; 31: 1093-1112
        • Schultheiss T.E.
        • Thames H.D.
        • Peters L.J.
        • et al.
        Effect of latency on calculated complication rates.
        Int J Radiat Oncol Biol Phys. 1986; 12: 1861-1865
        • Kirkpatrick J.P.
        • Meyer J.J.
        • Marks L.B.
        The linear-quadratic model is inappropriate to model high-dose per fraction effects.
        Semin Radiat Oncol. 2008; 18: 240-243

      Comments

      Commenting Guidelines

      To submit a comment for a journal article, please use the space above and note the following:

      • We will review submitted comments as soon as possible, striving for within two business days.
      • This forum is intended for constructive dialogue. Comments that are commercial or promotional in nature, pertain to specific medical cases, are not relevant to the article for which they have been submitted, or are otherwise inappropriate will not be posted.
      • We require that commenters identify themselves with names and affiliations.
      • Comments must be in compliance with our Terms & Conditions.
      • Comments are not peer-reviewed.