attribute this variation to genetic factors. We believe that detailed information on the structural chromosomal aberrations (dicentrics, rings, and acentric chromosomes) will help to clarify the difference between the 2 donors. The evaluation of the cell cycle during irradiation after 46 hours of culture is necessary for understanding the proliferation kinetics of circulating lymphocytes of each donor. The type of lesions, chromatid and chromosome breaks, as well as chromatin exchanges are closely related to the cell cycle phase.

This article certainly helps to advance our knowledge on the effects of low doses, but these findings require further validation with more donors and testing at lower doses (<0.1 Gy) using more efficient cytogenetic techniques, such as telomere and centromere staining, the addition of BrdU, and the counting of more metaphases. The introduction of these findings into radiation therapy practice will certainly go through multiple validations and automation of the techniques used (8).

Radhia M’kacher, PhD
Cell and Environment
Radiobiology Section
Paris, France

http://dx.doi.org/10.1016/j.ijrobp.2015.03.027

References


ERRATA


In the above-referenced article, the affiliation of first author Jean-Philippe Pignol should have been listed as Department of Radiation Oncology, University of Toronto at Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.

In addition, the first sentence under the Patient cohort subheading in the Methods and Materials section should have read as follows: “This study was conducted at the Sunnybrook Health Sciences Centre, a comprehensive center with universal health care access.”

http://dx.doi.org/10.1016/j.ijrobp.2015.02.049


In the above-referenced editorial, the name of the first author was misspelled. The correct spelling is Arjen van der Schaaf. The authors regret the error.

http://dx.doi.org/10.1016/j.ijrobp.2015.02.059