Advertisement

Intracranial Stereotactic Radiation Therapy With Charged Particle Beams: An Opportunity to Regain the Momentum

  • Frederik Vernimmen
    Correspondence
    Reprint requests to: Frederik Vernimmen, MD, Department of Radiation Oncology, Cork University Hospital, Wilton, Cork, Ireland. Tel: (+353) 21-49234530
    Affiliations
    Department of Radiation Oncology, Cork University Hospital, Wilton, Cork, Ireland
    Search for articles by this author
      The first charged particle treatment was done with protons at Berkeley in 1954. Clinical use was initially provided at physics research laboratories like those at Berkeley, Los Alamos, TRIUMF (Vancouver), PSI (Switzerland), the Harvard Cyclotron Laboratories (Boston), and iThemba LABS (Cape Town). A variety of charged particles such as helium ions, neon ions, protons, and negative Pi-mesons were used. The medical use of particle beams at these facilities had limitations in terms of patient logistics and beam time availability, but they generated the first series of publications on intracranial stereotactic use. Over time, the spectrum of charged particles has diminished with the disappearance of helium ions, neon ions, and negative Pi-mesons from the scene, and only protons and carbon ions are presently in use. Nowadays particle therapy is provided in dedicated hospital-based facilities, and the number of such facilities is growing, with the majority using protons. Owing to high investment costs, patients' preference, and referral patterns, the therapy programs in these facilities emphasize treating malignancies, with a few centers offering radiosurgery for benign intracranial pathologic conditions.
      To read this article in full you will need to make a payment
      ASTRO Member Login
      ASTRO Members, full access to the journal is a member benefit. Use your society credentials to access all journal content and features.

      Purchase one-time access:

      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Phillips M.H.
        • Frankel K.A.
        • Lyman J.T.
        • et al.
        Comparison of different radiation types and irradiation geometries in stereotactic radiosurgery.
        Int J Radiat Oncol Biol Phys. 1990; 18: 211-220
        • Verhey L.J.
        • Smith V.
        • Serago C.F.
        Comparison of radiosurgery treatment modalities based on physical dose distributions.
        Int J Radiat Oncol Biol Phys. 1998; 40: 497-505
        • Baumert B.G.
        • Norton I.A.
        • Lomax A.J.
        • et al.
        Dose conformation of intensity-modulated stereotactic photon beams, proton beams, and intensity-modulated proton beams for intracranial lesions.
        Int J Radiat Oncol Biol Phys. 2004; 60: 1314-1324
        • Boehling N.S.
        • Grosshans D.R.
        • Bluett J.B.
        • et al.
        Dosimetric comparison of three-dimensional conformal proton radiotherapy, intensity-modulated proton therapy, and intensity modulated radiotherapy for the treatment of pediatric craniopharyngiomas.
        Int J Radiat Oncol Biol Phys. 2012; 82: 643-652
        • Paganetti H.
        Range uncertainties in proton therapy and the role of Monte Carlo simulations.
        Phys Med Biol. 2012; 57: 99-117
        • Paganetti H.
        Relative biological effectiveness (RBE) values for proton beam therapy: Variations as a function of biological endpoint, dose, and linear energy transfer.
        Phys Med Biol. 2014; 59: 419-472
        • Matsumoto Y.
        • Matsuura T.
        • Wada M.
        • et al.
        Enhanced radiobiological effects at the distal end of a clinical proton beam: In vitro study.
        J Radiat Res. 2014; 55: 816-822
        • Gorissen B.L.
        • Giantsoudi D.
        • Unkelbach J.
        • et al.
        LET-based inverse planning for IMPT.
        Med Phys. 2015; 42: 3616
        • Jones B.
        Towards achieving the full clinical potential of proton therapy by inclusion of LET and RBE models.
        Cancers (Basel). 2015; 17: 460-480
        • Winkfield K.M.
        • Niemerko A.
        • Bussiere M.R.
        • et al.
        Modelling intracranial second tumor risk and estimates of clinical toxicity with various radiation therapy techniques for patients with pituitary adenoma.
        Technol Cancer Res Treat. 2011; 10: 243-251
        • Arvold N.D.
        • Niemerko A.
        • Broussard G.P.
        • et al.
        Projected second tumor risk and dose to neurocognitive structures after proton versus photon radiotherapy for benign meningiomas.
        Int J Radiat Oncol Biol Phys. 2012; 83: e495-e500
        • Zhang R.
        • Howell R.M.
        • Taddei P.J.
        • et al.
        A comparative study on the risk of radiogeneic second cancers and cardiac mortality in a set of pediatric medulloblastoma patients treated with photon or proton craniospinal irradiation.
        Radiother Oncol. 2014; 113: 84-88
        • Armoogum K.S.
        • Thorp N.
        Dosimetric comparison and potential for improved clinical outcomes of paediatric CNS patients treated with protons or IMRT.
        Cancers (Basel). 2015; 7: 706-722
        • Chang S.D.
        • Adler J.R.
        • Martin D.P.
        Linac radiosurgery for cavernous sinus meningiomas.
        Stereotact Funct Neurosurg. 1998; 71: 53-55
        • Subach B.R.
        • Lunsford L.D.
        • Kondziolka D.
        • et al.
        Management of petroclival meningiomas by stereotactic radiosurgery.
        Neurosurgery. 1998; 42: 437-445
        • Debus J.
        • Wuendrich M.
        • Pirzkall A.
        • et al.
        High efficacy of fractionated stereotactic radiotherapy of large skull base meningiomas: Long-term results.
        J Clin Oncol. 2001; 19: 3547-3553
        • Lo S.S.
        • Cho K.H.
        • Hall W.A.
        • et al.
        Single dose versus fractionated stereotactic radiotherapy for meningiomas.
        Can J Neurol Sci. 2002; 29: 240-248
        • Flickinger J.C.
        • Kondziolka D.
        • Maitz A.H.
        • et al.
        Gamma knife radiosurgery of imaging-diagnosed intracranial meningiomas.
        Int J Radiat Oncol Biol Phys. 2003; 56: 801-806
        • Roche P.H.
        • Pellet W.
        • Fuentes S.
        • et al.
        Gamma knife radiosurgical management of petroclival meningiomas results and indications.
        Acta Neurochir (Wien). 2003; 145: 883-888
        • Selch M.T.
        • Ahn E.
        • Laskari A.
        • et al.
        Stereotactic radiotherapy for treatment of cavernous sinus meningiomas.
        Int J Radiat Oncol Biol Phys. 2004; 59: 101-111
        • Zada G.
        • Pagnini P.G.
        • Yu C.
        • et al.
        Long term outcomes and patterns of tumor progression after gamma knife radiosurgery for benign meningiomas.
        Neurosurgery. 2010; 67: 322-328
        • Mahadevan A.
        • Floyd S.
        • Wong E.
        • et al.
        Clinical outcome after hypofractionated stereotactic radiotherapy for benign skull base tumors.
        Comput Aided Surg. 2011; 16: 112-120
        • Kaul D.
        • Budach V.
        • Misch M.
        • et al.
        Meningioma of the skull base: Long term outcome after image-guided stereotactic radiotherapy.
        Cancer Radiother. 2014; 18: 730-735
        • Fokas E.
        • Henzel M.
        • Surber G.
        • et al.
        Stereotactic radiation therapy for benign meningiomas: Long term outcome in 318 patients.
        Int J Radiat Oncol Biol Phys. 2014; 89: 569-575
        • Park S.H.
        • Kano H.
        • Niranjan A.
        • et al.
        Stereotactic radiosurgery for cerebellopontine angle meningiomas.
        J Neurosurg. 2014; 120: 708-715
        • Sheehan J.P.
        • Starke R.M.
        • Kano H.
        • et al.
        Gamma knife radiosurgery for posterior fossa meningiomas: A multicenter study.
        J Neurosurg. 2015; 10: 1-11
        • Kaplan I.D.
        • Castro J.R.
        • Phillips T.L.
        Helium charged particle radiotherapy for meningiomas: Experience at UCLBL. University of California Lawrence Berkeley Laboratory.
        Int J Radiat Oncol Biol Phys. 1994; 28: 257-261
        • Vernimmen F.J.
        • Harris J.K.
        • Wilson J.A.
        • et al.
        Stereotactic proton beam therapy of skull base meningiomas.
        Int J Radiat Oncol Biol Phys. 2001; 49: 99-105
        • Weber D.C.
        • Lomax A.J.
        • Rutz H.P.
        • et al.
        Spot-scanning proton radiation therapy for recurrent, residual or untreated intracranial meningiomas.
        Radiother Oncol. 2004; 71: 251-258
        • Halasz L.M.
        • Bussière M.R.
        • Dennis E.R.
        • et al.
        Proton stereotactic radiosurgery for the treatment of benign meningiomas.
        Int J Radiat Oncol Biol Phys. 2011; 81: 1428-1435
        • Slater J.D.
        • Loredo L.N.
        • Chung A.
        • et al.
        Fractionated proton radiotherapy for benign cavernous sinus meningiomas.
        Int J Radiat Oncol Biol Phys. 2012; 83: e633-e637
        • Weber D.C.
        • Schneider R.
        • Goitein G.
        • et al.
        Spot scanning-based proton therapy for intracranial meningiomas: Long term results from the Paul Scherrer Institute.
        Int J Radiat Oncol Biol Phys. 2012; 83: 865-871
        • Moyal L.
        • Vignal-Clermont C.
        • Boissonnet H.
        • et al.
        Results of fractionated targeted proton beam therapy in the treatment of primary optic nerve sheath meningiomas.
        J Fr Opthalmol. 2014; 37: 288-295
        • McDonald M.W.
        • Plankenhorn D.A.
        • McMullen K.P.
        • et al.
        Proton therapy for atypical meningiomas.
        J Neurooncol. 2015; 123: 123-128
        • Madani I.
        • Lomax A.J.
        • Albertini F.
        • et al.
        Dose-painting intensity-modulated proton therapy for intermediate- and high-risk meningiomas.
        Radiat Oncol. 2015; 10: 72
        • Combs S.E.
        • Welzel T.
        • Habermehl D.
        • et al.
        Prospective evaluation of early treatment outcome in patients with meningiomas treated with particle based on target volume definition with MRI and 68Ga-DOTATOC-PET.
        Acta Oncol. 2013; 52: 514-520
        • Vernimmen F.J.
        • Slabbert J.P.
        • Wilson J.A.
        • et al.
        Stereotactic proton beam therapy for intracranial arteriovenous malformations.
        Int J Radiat Oncol Biol Phys. 2005; 62: 44-52
        • Blomquist E.
        • Ronne E.E.
        • Borota L.
        • et al.
        Positive correlation between occlusion rate and nidus size of proton beam treated brain arteriovenous malformations (AVMs).
        Acta Oncol. 2015; 14: 1-8
        • Fabrikant J.I.
        • Levy R.P.
        • Steinberg G.K.
        • et al.
        Charged-particle radiosurgery for intracranial vascular malformations.
        Neurosurg Clin N Am. 1992; 3: 99-139
        • Grabham P.
        • Sharma P.
        • Bigelow A.
        • et al.
        Two distinct types of the inhibition of vasculogenesis by different species of charged particles.
        Vasc Cell. 2013; 5: 16
        • Levy R.P.
        • Fabrikant J.I.
        • Frankel K.A.
        • et al.
        Heavy-charged-particle radiosurgery of the pituitary gland: Clinical results of 840 patients.
        Stereotact Funct Neurosurg. 1991; 57: 22-35
        • Amichetti M.
        • Amelio D.
        • Minniti G.
        Radiosurgery with photons or protons for benign and malignant tumours of the skull base: A review.
        Radiat Oncol. 2012; 7: 210
        • Dilmanian F.A.
        • Rusek A.
        • Fois G.R.
        • et al.
        Interleaved carbon minibeams: An experimental radiosurgery method with clinical potential.
        Int J Radiat Oncol Biol Phys. 2012; 2: 514-518

      Comments

      Commenting Guidelines

      To submit a comment for a journal article, please use the space above and note the following:

      • We will review submitted comments as soon as possible, striving for within two business days.
      • This forum is intended for constructive dialogue. Comments that are commercial or promotional in nature, pertain to specific medical cases, are not relevant to the article for which they have been submitted, or are otherwise inappropriate will not be posted.
      • We require that commenters identify themselves with names and affiliations.
      • Comments must be in compliance with our Terms & Conditions.
      • Comments are not peer-reviewed.