Advertisement

A Current Review of Spatial Fractionation: Back to the Future?

Published:January 23, 2019DOI:https://doi.org/10.1016/j.ijrobp.2019.01.073
      Spatially fractionated radiation therapy represents a significant departure from canonical thinking in radiation oncology despite having origins in the early 1900s. The original and most common implementation of spatially fractionated radiation therapy uses commercially available blocks or multileaf collimators to deliver a nonconfluent, sieve-like pattern of radiation to the target volume in a nonuniform dose distribution. Dosimetrically, this is parameterized by the ratio of the valley dose in cold spots to the peak dose in hot spots, or the valley-to-peak dose ratio. The radiobiologic mechanisms are postulated to involve radiation-induced bystander effects, microvascular alterations, and/or immunomodulation. Current indications include bulky or locally advanced disease that would not be amenable to conventional radiation or that has proved refractory to chemoradiation. Early-phase clinical trials have shown remarkable success, with some response rates >90% and minimal toxicity. This has promoted technological developments in 3-dimensional formats (LATTICE), micron-size beams (microbeam), and proton arrays. Nevertheless, more clinical and biological data are needed to specify ideal dosimetry parameters and to formulate robust clinical indications and guidelines for optimal standardized care.
      To read this article in full you will need to make a payment
      ASTRO Member Login
      ASTRO Members, full access to the journal is a member benefit. Use your society credentials to access all journal content and features.
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Laissue J.
        • Blattmann H.
        • Slatkin D.
        [Alban Köhler (1874-1947): Inventor of grid therapy].
        Z Med Phys. 2012; 22: 90-99
        • Liberson F.
        The value of a multi-perforated screen in deep X-ray therapy: A preliminary report on a new method of delivering multiple erythema doses without permanent injury to the skin.
        Radiology. 1933; 20: 186-195
        • Marks H.
        Clinical experience with irradiation through a grid.
        Radiology. 1952; 58: 338-342
        • Failla G.
        Irradiation through grids.
        Radiology. 1952; 58: 424-426
        • Mohiuddin M.
        • Curtis D.L.
        • Grizos W.T.
        • Komarnicky L.
        Palliative treatment of advanced cancer using multiple nonconfluent pencil beam radiation. A pilot study.
        Cancer. 1990; 66: 114-118
        • Dubben H.H.
        • Thames H.D.
        • Beck-Bornholdt H.P.
        Tumor volume: A basic and specific response predictor in radiotherapy.
        Radiother Oncol. 1998; 47: 167-174
        • Mohiuddin M.
        • Stevens J.H.
        • Reiff J.E.
        • Huq M.S.
        • Suntharalingam N.
        Spatially fractionated (GRID) radiation for palliative treatment of advanced cancer.
        Radiation Oncology Investigations. 1996; 4: 41-47
        • Reiff J.E.
        • Saiful Huq M.
        • Mohiuddin M.
        • Suntharalingam N.
        Dosimetric properties of megavoltage grid therapy.
        Int J Radiat Biol Phys. 1995; 33: 937-942
        • Gholami S.
        • Nedaie H.A.
        • Longo F.
        • Ay M.R.
        • Dini S.A.
        • Meigooni A.S.
        Grid block design based on Monte Carlo simulated dosimetry, the linear quadratic and Hug-Kellerer radiobiological models.
        J Med Phys. 2017; 42: 213-221
        • Meigooni A.S.
        • Dou K.
        • Meigooni N.J.
        • et al.
        Dosimetric characteristics of a newly designed grid block for megavoltage photon radiation and its therapeutic advantage using a linear quadratic model.
        Med Phys. 2006; 33: 3165-3173
        • Buckey C.
        • Stathakis S.
        • Cashon K.
        • et al.
        Evaluation of a commercially-available block for spatially fractionated radiation therapy.
        J Appl Clin Med Phys. 2010; 11: 3163
        • Ha J.K.
        • Zhang G.
        • Naqvi S.A.
        • Regine W.F.
        • Yu C.X.
        Feasibility of delivering grid therapy using a multileaf collimator.
        Med Phys. 2006; 33: 76-82
        • Neuner G.
        • Mohiuddin M.M.
        • Vander Walde N.
        • et al.
        High-dose spatially fractionated GRID radiation therapy (SFGRT): A comparison of treatment outcomes with Cerrobend vs. MLC SFGRT.
        Int J Radiat Oncol Biol Phys. 2012; 82: 1642-1649
        • Nobah A.
        • Mohiuddin M.
        • Devic S.
        • Moftah B.
        Effective spatially fractionated GRID radiation treatment planning for a passive grid block.
        Br J Radiol. 2015; 88: 20140363
        • Almendral P.
        • Mancha P.J.
        • Roberto D.
        Feasibility of a simple method of hybrid collimation for megavoltage grid therapy.
        Med Phys. 2013; 40: 051712
        • Zhang X.
        • Penagaricano J.
        • Yan Y.
        • et al.
        Application of spatially fractionated radiation (GRID) to helical tomotherapy using a novel TOMOGRID template.
        Technol Cancer Res Treat. 2016; 15: 91-100
        • Gholami S.
        • Severgnini M.
        • Nedaie H.A.
        • Longo F.
        • Meigooni A.S.
        PO-0947: VMAT-based grid for spatially fractionated radiation therapy.
        Radiother Oncol. 2016; 119: S460
        • Mohiuddin M.
        • Fujita M.
        • Regine W.F.
        • Megooni A.S.
        • Ibbott G.S.
        • Ahmed M.M.
        High-dose spatially-fractionated radiation (GRID): A new paradigm in the management of advanced cancers.
        Int J Radiat Oncol Biol Phys. 1999; 45: 721-727
        • Kudrimoti M.
        • Regine W.F.
        • Huhn J.L.
        • Meigooni A.S.
        • Ahmed M.
        • Mohiuddin M.
        Spatially fractionated radiation therapy (SFR) in the palliation of large bulky (>8 cm) melanomas.
        Int J Radiat Biol Phys. 2002; 54: 342-343
        • Mohiuddin M.
        • Miller T.
        • Ronjon P.
        • Malik U.
        Spatially fractionated grid radiation (SFGRT): A novel approach in the management of recurrent and unresectable soft tissue sarcoma.
        Int J Radiat Oncol Biol Phys. 2009; 75: S526
        • Mohiuddin M.
        • Memon M.
        • Nobah A.
        • et al.
        Locally advanced high-grade extremity soft tissue sarcoma: Response with novel approach to neoadjuvant chemoradiation using induction spatially fractionated GRID radiotherapy (SFGRT).
        J Clin Oncol. 2014; 32 (10575): 10575
        • Huhn J.L.
        • Regine W.F.
        • Valentino J.P.
        • Meigooni A.S.
        • Kudrimoti M.
        • Mohiuddin M.
        Spatially fractionated GRID radiation treatment of advanced neck disease associated with head and neck cancer.
        Technol Cancer Res Treat. 2006; 5: 607-612
        • Penagaricano J.A.
        • Moros E.G.
        • Ratanatharathorn V.
        • Yan Y.
        • Corry P.
        Evaluation of spatially fractionated radiotherapy (GRID) and definitive chemoradiotherapy with curative intent for locally advanced squamous cell carcinoma of the head and neck: Initial response rates and toxicity.
        Int J Radiat Oncol Biol Phys. 2010; 76: 1369-1375
        • Edwards J.M.
        • Shah P.H.
        • Huhn J.L.
        • et al.
        Definitive GRID and fractionated radiation in bulky head and neck cancer associated with low rates of distant metastasis.
        Int J Radiat Oncol Biol Phys. 2015; 93: E334
        • Mohiuddin M.
        • Park H.
        • Hallmeyer S.
        • Richards J.
        High-dose radiation as a dramatic, immunological primer in locally advanced melanoma.
        Cureus. 2015; 7: e417
        • Kaiser A.
        • Mohiuddin M.M.
        • Jackson G.L.
        Dramatic response from neoadjuvant, spatially fractionated GRID radiotherapy (SFGRT) for large, high-grade extremity sarcoma.
        J Radiat Oncol. 2012; 2: 103-106
        • Prasanna A.
        • Ahmed M.M.
        • Mohiuddin M.
        • Coleman C.N.
        Exploiting sensitization windows of opportunity in hyper and hypo-fractionated radiation therapy.
        J Thorac Dis. 2014; 6: 287-302
        • Hopewell J.W.
        • Trott K.R.
        Volume effects in radiobiology as applied to radiotherapy.
        Radiother Oncol. 2000; 56: 283-288
        • Blyth B.J.
        • Sykes P.J.
        Radiation-induced bystander effects: What are they, and how relevant are they to human radiation exposures?.
        Radiat Res. 2011; 176: 139-157
        • Emerit I.
        • Levy A.
        • Cernjavski L.
        • et al.
        Transferable clastogenic activity in plasma from persons exposed as salvage personnel of the Chernobyl reactor.
        J Cancer Res Clin Oncol. 1994; 120: 558-561
        • Lyng F.M.
        • Seymour C.B.
        • Mothersill C.
        Production of a signal by irradiated cells which leads to a response in unirradiated cells characteristic of initiation of apoptosis.
        Br J Cancer. 2000; 83: 1223-1230
        • Azzam E.I.
        • de Toledo S.M.
        • Little J.B.
        Oxidative metabolism, gap junctions and the ionizing radiation-induced bystander effect.
        Oncogene. 2003; 22: 7050
        • Prise K.M.
        • O'Sullivan J.M.
        Radiation-induced bystander signalling in cancer therapy.
        Nat Rev Cancer. 2009; 9: 351-360
        • Najafi M.
        • Fardid R.
        • Hadadi G.
        • Fardid M.
        The mechanisms of radiation-induced bystander effect.
        J Biomed Phys Eng. 2014; 4: 163-172
        • Asur R.S.
        • Sharma S.
        • Chang C.W.
        • et al.
        Spatially fractionated radiation induces cytotoxicity and changes in gene expression in bystander and radiation adjacent murine carcinoma cells.
        Radiat Res. 2012; 177: 751-765
        • Sathishkumar S.
        • Dey S.
        • Meigooni A.S.
        • et al.
        The impact of TNF-alpha induction on therapeutic efficacy following high dose spatially fractionated (GRID) radiation.
        Technol Cancer Res Treat. 2002; 1: 141-147
        • Shareef M.M.
        • Cui N.
        • Burikhanov R.
        • et al.
        Role of tumor necrosis factor-alpha and TRAIL in high-dose radiation-induced bystander signaling in lung adenocarcinoma.
        Cancer Res. 2007; 67: 11811-11820
        • Kanagavelu S.
        • Gupta S.
        • Wu X.
        • et al.
        In vivo effects of lattice radiation therapy on local and distant lung cancer: Potential role of immunomodulation.
        Radiat Res. 2014; 182: 149-162
        • Folkman J.
        Role of angiogenesis in tumor growth and metastasis.
        Semin Oncol. 2002; 29: 15-18
        • Haimovitz-Friedman A.
        • Kan C.C.
        • Ehleiter D.
        • et al.
        Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis.
        J Exp Med. 1994; 180: 525-535
        • Santana P.
        • Pena L.A.
        • Haimovitz-Friedman A.
        • et al.
        Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis.
        Cell. 1996; 86: 189-199
        • Garcia-Barros M.
        • Paris F.
        • Cordon-Cardo C.
        • et al.
        Tumor response to radiotherapy regulated by endothelial cell apoptosis.
        Science. 2003; 300: 1155-1159
        • Garcia-Barros M.
        • Lacorazza D.
        • Petrie H.
        • et al.
        Host acid sphingomyelinase regulates microvascular function not tumor immunity.
        Cancer Res. 2004; 64: 8285-8291
        • Alphonse G.
        • Bionda C.
        • Aloy M.T.
        • Ardail D.
        • Rousson R.
        • Rodriguez-Lafrasse C.
        Overcoming resistance to γ-rays in squamous carcinoma cells by poly-drug elevation of ceramide levels.
        Oncogene. 2004; 23: 2703
        • Hara S.
        • Nakashima S.
        • Kiyono T.
        • et al.
        p53-Independent ceramide formation in human glioma cells during gamma-radiation-induced apoptosis.
        Cell Death Differ. 2004; 11: 853-861
        • Sathishkumar S.
        • Boyanovsky B.
        • Karakashian A.A.
        • et al.
        Elevated sphingomyelinase activity and ceramide concentration in serum of patients undergoing high dose spatially fractionated radiation treatment: Implications for endothelial apoptosis.
        Cancer Biol Ther. 2005; 4: 979-986
        • Nolan M.W.
        • Gieger T.L.
        • Karakashian A.A.
        • et al.
        Outcomes of spatially fractionated radiotherapy (GRID) for bulky soft tissue sarcomas in a large animal model.
        Technol Cancer Res Treat. 2017; 16: 357-365
        • Wattenberg M.M.
        • Fahim A.
        • Ahmed M.M.
        • Hodge J.W.
        Unlocking the combination: Potentiation of radiation-induced antitumor responses with immunotherapy.
        Radiat Res. 2014; 182: 126-138
        • Manda K.
        • Glasow A.
        • Paape D.
        • Hildebrandt G.
        Effects of ionizing radiation on the immune system with special emphasis on the interaction of dendritic and T cells.
        Front Oncol. 2012; 2: 102
        • Lugade A.A.
        • Moran J.P.
        • Gerber S.A.
        • Rose R.C.
        • Frelinger J.G.
        • Lord E.M.
        Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor.
        J Immunol. 2005; 174: 7516
        • Lee Y.
        • Auh S.L.
        • Wang Y.
        • et al.
        Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: Changing strategies for cancer treatment.
        Blood. 2009; 114: 589-595
        • Burnette B.C.
        • Liang H.
        • Lee Y.
        • et al.
        The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity.
        Cancer Res. 2011; 71: 2488-2496
        • Demaria S.
        • Ng B.
        • Devitt M.L.
        • et al.
        Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated.
        Int J Radiat Oncol Biol Phys. 2004; 58: 862-870
        • Formenti S.C.
        • Demaria S.
        Radiotherapy to convert the tumor into an in situ vaccine.
        Int J Radiat Oncol Biol Phys. 2012; 84: 879-880
        • Hannani D.
        • Sistigu A.
        • Kepp O.
        • Galluzzi L.
        • Kroemer G.
        • Zitvogel L.
        Prerequisites for the antitumor vaccine-like effect of chemotherapy and radiotherapy.
        Cancer J. 2011; 17: 351-358
        • Markovsky E.
        • Budhu S.
        • Samstein R.M.
        • et al.
        An anti-tumor immune response is evoked by partial-volume single dose radiation in two murine models.
        Int J Radiat Biol Phys. 2019; 103: 697-708
        • Wu X.
        • Ahmed M.M.
        • Wright J.
        • Gupta S.
        • Pollack A.
        On modern technical approaches of three-dimensional high-dose lattice radiotherapy (LRT).
        Cureus. 2018; 2: e9
        • Amendola B.E.
        • Perez N.C.
        • Wu X.
        • Blanco Suarez J.M.
        • Lu J.J.
        • Amendola M.
        Improved outcome of treating locally advanced lung cancer with the use of lattice radiotherapy (LRT): A case report.
        Clin Transl Radiat Oncol. 2018; 9: 68-71
        • Amendola B.E.
        • Perez N.
        • Amendola M.A.
        • et al.
        Lattice radiotherapy with RapidArc for treatment of gynecological tumors: Dosimetric and early clinical evaluations.
        Cureus. 2010; 2: e15
        • Blanco Suarez J.M.
        • Amendola B.E.
        • Perez N.
        • Amendola M.
        • Wu X.
        The use of lattice radiation therapy (LRT) in the treatment of bulky tumors: A case report of a large metastatic mixed Mullerian ovarian tumor.
        Cureus. 2015; 7: e389
        • Grotzer M.A.
        • Schultke E.
        • Brauer-Krisch E.
        • Laissue J.A.
        Microbeam radiation therapy: Clinical perspectives.
        Phys Med. 2015; 31: 564-567
        • Schültke E.
        • Balosso J.
        • Breslin T.
        • et al.
        Microbeam radiation therapy — grid therapy and beyond: A clinical perspective.
        Br J Radiol. 2017; 90: 20170073
        • Wright M.D.
        Microbeam radiosurgery: An industrial perspective.
        Physica Medica. 2015; 31: 601-606
        • Newhauser W.D.
        • Zhang R.
        The physics of proton therapy.
        Phys Med Biol. 2015; 60: R155-R209
        • Henry T.
        • Ureba A.
        • Valdman A.
        • Siegbahn A.
        Proton grid therapy.
        Technol Cancer Res Treat. 2016; 16 (1533034616681670)
        • Henry T.
        • Valdman A.
        • Siegbahn A.
        OC-0546: The development of proton-beam grid therapy (PBGT).
        Radiother Oncol. 2016; 119: S260-S261
        • Henry T.
        • Bassler N.
        • Ureba A.
        • Tsubouchi T.
        • Valdman A.
        • Siegbahn A.
        Development of an interlaced-crossfiring geometry for proton grid therapy.
        Acta Oncol. 2017; 56: 1437-1443
        • Gao M.
        • Mohiuddin M.M.
        • Hartsell W.F.
        • Pankuch M.
        Spatially fractionated (GRID) radiation therapy using proton pencil beam scanning (PBS): A feasibility study.
        Int J Radiat Oncol Biol Phys. 2015; 93 (E562): E562
        • Prezado Y.
        • Fois G.R.
        Proton-minibeam radiation therapy: A proof of concept.
        Med Phys. 2013; 40: 031712
        • Dilmanian F.A.
        • Eley J.G.
        • Krishnan S.
        Minibeam therapy with protons and light ions: Physical feasibility and potential to reduce radiation side effects and to facilitate hypofractionation.
        Int J Radiat Oncol Biol Phys. 2015; 92: 469-474
        • Peucelle C.
        • Nauraye C.
        • Patriarca A.
        • et al.
        Proton minibeam radiation therapy: Experimental dosimetry evaluation.
        Med Phys. 2015; 42: 7108-7113
        • Girst S.
        • Greubel C.
        • Reindl J.
        • et al.
        Proton minibeam radiation therapy reduces side effects in an in vivo mouse ear model.
        Int J Radiat Biol Phys. 2016; 95: 234-241
        • Prezado Y.
        • Jouvion G.
        • Hardy D.
        • et al.
        Proton minibeam radiation therapy spares normal rat brain: Long-term clinical, radiological and histopathological analysis.
        Scientific Reports. 2017; 7: 14403
        • Sammer M.
        • Greubel C.
        • Girst S.
        • Dollinger G.
        Optimization of beam arrangements in proton minibeam radiotherapy by cell survival simulations.
        Med Phys. 2017; 44: 6096-6104
        • Martinez-Rovira I.
        • Fois G.
        • Prezado Y.
        Dosimetric evaluation of new approaches in GRID therapy using nonconventional radiation sources.
        Med Phys. 2015; 42: 685-693

      Comments

      Commenting Guidelines

      To submit a comment for a journal article, please use the space above and note the following:

      • We will review submitted comments as soon as possible, striving for within two business days.
      • This forum is intended for constructive dialogue. Comments that are commercial or promotional in nature, pertain to specific medical cases, are not relevant to the article for which they have been submitted, or are otherwise inappropriate will not be posted.
      • We require that commenters identify themselves with names and affiliations.
      • Comments must be in compliance with our Terms & Conditions.
      • Comments are not peer-reviewed.